Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. med. biol. res ; 52(5): e8412, 2019. graf
Article in English | LILACS | ID: biblio-1001528

ABSTRACT

Multiple myeloma (MM) is a malignant neoplasm of plasma, and exhibits several harmful effects including osteolytic injuries, hypercalcemia, and immune dysfunction. Many patients with MM succumb to the underlying malignancy. An S-phase kinase-related protein 2 (Skp2) inhibitor, designated SKPin C1, has been developed and confirmed to have an inhibitory effect on metastatic melanoma cells. This study aimed to determine the effect of SKPin C1 on MM. Normal B lymphocytes, THP-1 cells, and MM U266 and RPMI 8226 cells were exposed to various dosages of SKPin C1 for 48 h. Cell proliferation was determined by MTT, EdU staining, and cell cycle assays. Western blot assays were performed to assess intracellular protein levels of Skp2, p27, and cleaved caspase-3. The amount of ubiquitin attached to p27 was determined using an immunoprecipitation assay. The viability of U266 and RPMI 8226 cells was significantly inhibited by 10 μM SKPin C1 and the inhibitory effect was enhanced with increasing doses of SKPin C1. In contrast, 50 μM SKPin C1 only marginally decreased viability of normal B lymphocytes in 12 h. Skp2 and p27 expression in U266 and RPMI 8226 cells was higher and lower, respectively, than that in the normal B lymphocytes. Treatment with SKPin C1 or Skp2 knockdown increased p27 protein levels in U266 and RPMI 8226 cells by preventing p27 from being ubiquitinated, which slowed the cell cycle, inhibited cell proliferation, and triggered apoptosis. Therefore, this study suggested SKPin C1 as a potent inhibitor against aberrant proliferation and immortalization of MM.


Subject(s)
Humans , Apoptosis , S-Phase Kinase-Associated Proteins/metabolism , Cell Proliferation/physiology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Multiple Myeloma/metabolism , Cell Cycle , S-Phase Kinase-Associated Proteins/antagonists & inhibitors , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p27/pharmacology , Ubiquitination/physiology , Ubiquitinated Proteins/metabolism , Multiple Myeloma/physiopathology
2.
Chinese Journal of Biotechnology ; (12): 959-972, 2012.
Article in Chinese | WPRIM | ID: wpr-342425

ABSTRACT

Penicillium decumbens T. is an important filamentous fungus for the production of cellulases to effectively degrade lignocellulose for second generation biofuel production. In order to enhance the capability of Penicillium decumbens to produce cellulases, we constructed a creB (a deubiquitinating enzyme encoding gene) deletion cassette, and generated a creB knockout strain with homologous double crossover recombination. This mutation resulted in a detectable decrease of carbon catabolite repression (CCR) effect. The filter paper activity, endoglucanase activity, xylanase activity and exoglucanase activity of the deltacreB strain increased by 1.8, 1.71, 2.06 and 2.04 fold, respectively, when comparing with the parent strain Ku-39. A 2.68 fold increase of extracellular protein concentration was also observed. These results suggest that the deletion of creB results in CCR derepression. These data also suggest that CREB influences cellulase production of Penicillium decumbens. In generation, this study provides information that can be helpful for constructing cellulase hyper-producing strain.


Subject(s)
Cellulase , Endopeptidases , Genetics , Metabolism , Gene Knockout Techniques , Lignin , Metabolism , Mutant Proteins , Metabolism , Penicillium , Genetics , Recombination, Genetic , Ubiquitinated Proteins , Genetics , Ubiquitination
3.
Experimental & Molecular Medicine ; : 487-493, 2011.
Article in English | WPRIM | ID: wpr-7980

ABSTRACT

Glucosamine, a naturally occurring amino monosaccharide, has been reported to play a role in the regulation of apoptosis more than half century. However the effect of glucosamine on tumor cells and the involved molecular mechanisms have not been thoroughly investigated. Glucosamine enters the hexosamine biosynthetic pathway (HBP) downstream of the rate-limiting step catalyzed by the GFAT (glutamine:fluctose-6-phosphate amidotransferase), providing UDP-GlcNAc substrates for O-linked beta-N-acetylglucosamine (O-GlcNAc) protein modification. Considering that O-GlcNAc modification of proteasome subunits inhibits its activity, we examined whether glucosamine induces growth inhibition via affecting proteasomal activity. In the present study, we found glucosamine inhibited proteasomal activity and the proliferation of ALVA41 prostate cancer cells. The inhibition of proteasomal activity results in the accumulation of ubiquitinated proteins, followed by induction of apoptosis. In addition, we demonstrated that glucosamine downregulated proteasome activator PA28gamma and overexpression of PA28gamma rescued the proteasomal activity and growth inhibition mediated by glucosamine. We further demonstrated that inhibition of O-GlcNAc abrogated PA28gamma suppression induced by glucosamine. These findings suggest that glucosamine may inhibit growth of ALVA41 cancer cells through downregulation of PA28gamma and inhibition of proteasomal activity via O-GlcNAc modification.


Subject(s)
Humans , Male , Acetylglucosamine/chemistry , Alloxan/pharmacology , Apoptosis/drug effects , Autoantigens/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Glucosamine/pharmacology , Phosphorylation , Prostatic Neoplasms/enzymology , Proteasome Endopeptidase Complex/antagonists & inhibitors , RNA, Small Interfering/genetics , Ubiquitinated Proteins/metabolism
4.
Korean Diabetes Journal ; : 453-457, 2009.
Article in Korean | WPRIM | ID: wpr-126161

ABSTRACT

Diabetes mellitus is characterized by decreased insulin secretion and action. Decreased insulin secretion results from a reduction in mass and/or function of pancreatic beta-cells. Apoptosis, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress responses have been suggested as mechanisms for the changes in beta-cells in type 2 diabetes; however, the underlying causes have not been clearly elucidated. Autophagy is an intracellular process that maintains cellular homeostasis through degradation and recycling of organelles. Recently, we reported reduction of beta-cell mass in autophagy-deficient mice. Pancreatic insulin content was also decreased due to the decreased beta-cell mass and the reduced number of insulin granules. Morphological analysis of these beta-cells revealed an accumulation of ubiquitinated proteins, swollen mitochondria, and distended ER. Insulin secretory function ex vivo was also impaired. As a result, autophagy-deficient mice showed hypoinsulinemia and hyperglycemia. These results suggested that autophagy is necessary to maintain the structure, mass and function of beta-cells. In addition, as autophagy may play a protective role against ER stress and rejuvenate organelle function, impaired autophagy may lead to mitochondrial dysfunction and ER stress, which have been implicated as causes of insulin resistance. Therefore, in addition to beta-cell homeostasis, dysregulated autophagy may possibly be involved in insulin resistance.


Subject(s)
Animals , Mice , Apoptosis , Autophagy , Diabetes Mellitus , Endoplasmic Reticulum , Homeostasis , Hyperglycemia , Insulin , Insulin Resistance , Insulin-Secreting Cells , Mitochondria , Organelles , Oxidative Stress , Recycling , Ubiquitinated Proteins
SELECTION OF CITATIONS
SEARCH DETAIL